
NTI Gymnasiet

Teknikprogrammet

Gymnasiearbete 100 p

HT 2023-VT 2024

Sorting algorithms

Comparison of sorting algorithms’ performance

Axel Thornberg

Handledare: Filip Vallin

Examinator: Beatrice Larsson

1



Abstract

Sorting algorithms are an important piece of any decently sized modern digital system and are

easily bottlenecks due to the sheer complexity of their task. Therefore it is of great importance

that knowing which algorithms are the best in certain situations is crucial for creating efficient

software. Therefore this paper attempts to answer the question “How does the efficiency of

sorting algorithms compare when subjected to different sizes of data with different standard

deviations of a Gaussian distribution?” in a concrete and precise manner to give a good source

of information regarding algorithms and their applicability in different scenarios. The survey

will be conducted through a comprehensive Python program that will repeatedly test different

algorithms. To do this it will use 5 libraries (random, pickle, time, os and plotly) as well as

high-quality hardware (i9-12900KF and 32 GB of 4400 MHz RAM). The results of the

survey showed that Quicksort by far had the fastest mean time when compared to the other

algorithms. Still, it is not always the best as the other’s proved to be more consistent and a

hybrid algorithm based on Quicksort will most likely outperform it.

2



Table of contents

1. Introduction........................................................................................................................... 4
2. Purpose and question............................................................................................................5
3. Theory..................................................................................................................................... 6
4. Method and material............................................................................................................. 10

4.1. Method......................................................................................................................... 10
4.2. Material........................................................................................................................ 10

5. Results.................................................................................................................................. 11
6. Discussion.............................................................................................................................13
7. Conclusion............................................................................................................................15

3



1. Introduction
Sorting is not as easy as most people believe it to be. When manually sorting ten elements it

does not matter much what way you do it as you get the same results. But when done with

datasets with orders of magnitude larger, those methods quickly fall apart. For a computer, the

time it takes to sort said dataset with an efficient algorithm and an inefficient algorithm will

take milliseconds respectively minutes. Certain algorithms can be quite easy to filter out as

slower or faster than others, but when it comes to comparing the fastest algorithms with each

other there is no clear indication of which is faster. Here, the only method to find the faster

algorithm is to test and compare them to each other.

4



2. Purpose and question
The purpose of this survey is to find out how different sorting algorithms compare to each

other. This information is somewhat hard to find due to the nature of the question as the

efficiency of each algorithm naturally varies with the input data. This survey will address this

by using different sets of data to produce comprehensive data for which algorithm is best in

different scenarios. How does the efficiency of sorting algorithms compare when subjected to

different sizes of data with different standard deviations of a Gaussian distribution?

5



3. Theory
Algorithm: An algorithm is a sequence of instructions, typically used to solve problems or to

perform a computation.[1]

Sorting algorithm: A sorting algorithm is an algorithm that orders the elements of a list.[2]

Big O notation: Big O notation is a notation that shows the correlation between input data and

the growth rate of the run time.[10]

Time complexity: Time complexity describes the number of elemental operations an

algorithm will compute. It is measured in Big O notation.[3]

Function: A function is a sequence of program instructions that performs a specific task,

packaged as a unit.[4]

Recursive function: A function which calls upon itself from within its code.[5]

Gaussian distribution: Gaussian distribution is a type of continuous probability distribution

for a real-valued random variable.[6]

Comparison sort: A comparison sort is a sorting algorithm that sorts a list by comparing the

elements of a list with other elements.[7]

Computational overhead: Computational overhead represents an amount of time unrelated to

the task itself but necessary to run it.[8]

Hybrid algorithm: An algorithm that uses different algorithms depending on the data therefore

being able to use the optimal algorithm depending on the circumstances but losing

performance to overhead.[9] These algorithms can be some of the fastest available.[2]

Quicksort: Quicksort is a recursive comparison sorting algorithm that selects a pivot before

iterating through the array and recursively sorting all values smaller or greater than the

selected pivot. It has an average time complexity of O(n log n).[11]

Mergesort: Mergesort is a recursive comparison sorting algorithm that recursively splits the

array in two until it reaches a length of 1. Then it recursively merges the list while comparing

and moving the values to give a sorted list. It has an average time complexity of O(n log n).[12]

6



Heapsort: Heapsort is a comparison sorting algorithm that splits the array into a sorted and

unsorted region. Then it extracts the largest value of the unsorted region and inserts it into the

correct position of the sorted region. It has an average time complexity of O(n log n).[13]

Insertion sort: Insertion sort is a comparison sorting algorithm that iterates through the array

and moves each item to the correct position. It has an average time complexity of O(n2).[14]

Timsort: Timsort is a comparison sorting algorithm that creates small sets of sorted data called

runs. Considering the smaller size of these, insertion sort is fast enough even considering its

worse time complexity. After that, it merges these runs in the same manner as Mergesort

does.[15]

Uniform distribution: Uniform distribution is a probability distribution where each value has

an equal probability.[16]

All sorting algorithms are affected by the input data. Therefore, most concrete studies have

mainly focused on their time complexity, which is the same for an algorithm no matter the

input.[2] Heapsort, Mergesort, and Quicksort are listed as the most efficient algorithms in

different situations.[2] All of the tested algorithms are comparison sorts meaning that they are

all structurally similar and that Python as a programming language will not benefit either in

terms of performance.

7



1. Wikipedia. 2023. "Algorithm." Wikimedia Foundation. Last modified September 24,

2023. https://en.wikipedia.org/wiki/Algorithm.

2. Wikipedia. 2023. "Sorting Algorithm." Wikimedia Foundation. Last modified

September 26, 2023. https://en.wikipedia.org/wiki/Sorting_algorithm.

3. Wikipedia. 2023. "Time Complexity." Wikimedia Foundation. Last modified

September 22, 2023. https://en.wikipedia.org/wiki/Time_complexity.

4. Wikipedia. 2023. "Function (Computer Programming)." Wikimedia Foundation. Last

modified September 27, 2023.

https://en.wikipedia.org/wiki/Function_(computer_programming).

5. Wikipedia. 2023. "Recursion (Computer Science)." Wikimedia Foundation. Last

modified August 21, 2023.

https://en.wikipedia.org/wiki/Recursion_(computer_science).

6. Wikipedia. 2023. "Normal Distribution." Wikimedia Foundation. Last modified

September 27, 2023. https://en.wikipedia.org/wiki/Normal_distribution.

7. Wikipedia. 2023. "Comparison Sort." Wikimedia Foundation. Last modified July 31,

2023. https://en.wikipedia.org/wiki/Comparison_sort.

8. Wikipedia. 2023. "Overhead (Computing)." Wikimedia Foundation. Last modified

May 21, 2023. https://en.wikipedia.org/wiki/Overhead_(computing).

9. Wikipedia. 2023. "Hybrid Algorithm." Wikimedia Foundation. Last modified

February 3, 2023. https://en.wikipedia.org/wiki/Hybrid_algorithm.

10. Wikipedia. 2024. "Big O notation." Wikimedia Foundation. Last modified February 4,

2024. https://en.wikipedia.org/wiki/Big_O_notation.

11. Wikipedia. 2024. "Quicksort." Wikimedia Foundation. Last modified January 3, 2024.

https://en.wikipedia.org/wiki/Quicksort.

12. Wikipedia. 2024. "Merge Sort." Wikimedia Foundation. Last modified January 27,

2024. https://en.wikipedia.org/wiki/Merge_sort.

13. Wikipedia. 2024. "Heapsort." Wikimedia Foundation. Last modified February 12,

2024. https://en.wikipedia.org/wiki/Heapsort.

14. Wikipedia. 2023. "Insertion Sort." Wikimedia Foundation. Last modified December

29, 2023. https://en.wikipedia.org/wiki/Insertion_sort.

15. Wikipedia. 2024. "Timsort." Wikimedia Foundation. Last modified February 13, 2024.

https://en.wikipedia.org/wiki/Timsort.

8

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Function_(computer_programming)
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Comparison_sort
https://en.wikipedia.org/wiki/Overhead_(computing)
https://en.wikipedia.org/wiki/Hybrid_algorithm
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Heapsort
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Timsort


16. Wikipedia. 2024. "Continuous Uniform Distribution." Wikimedia Foundation. Last

modified January 26, 2024.

https://en.wikipedia.org/wiki/Continuous_uniform_distribution.

9

https://en.wikipedia.org/wiki/Continuous_uniform_distribution


4. Method and material

4.1. Method
This project consists of three Python programs. The first contains the algorithms as efficient

Python functions that take input in the form of an unsorted array and then return the sorted

permutation. These algorithms are used in the second program.

The second generates the data necessary for this project. It creates 9 different random normal

distributed arrays using the Gauss function in the random library. These are a combination of

three different sizes and three different densities of standard deviation. The lists as mentioned

earlier are tested against four different sorting algorithms. Using the time library, the time is

measured. This yields 36 different times, all saved to an external file using the pickle library.

The program then loops this 25,000 times over.

The third program takes the data from the second and processes it into readable and useful

formats. Some of these are the mean time in each category as well as the overall mean time

for each algorithm. Other formats are graphs to show the distribution of times.

4.2. Material
This program has been written in Python (3.11.6) alongside 5 libraries. These are random,

pickle, time, os and plotly. The relevant hardware is an i9-12900KF and 32 GB of 4400 MHz

RAM.

10



5. Results
The survey yielded that Quicksort was the fastest algorithm for all categories. It had a mean

time of 23.051756841333308 milliseconds to sort an array. Mergesort was the second fastest

across all categories taking a mean of 46.04735194177758 milliseconds to sort an array.

Heapsort had the third fastest mean time of 66.34182150711104 milliseconds. Timsort was

the slowest at a mean time of 67.54026761244455 milliseconds. Timsort was faster than

Heapsort in 4 categories while Heapsort was faster than Timsort in 5 categories. Timsort was

generally faster than Heapsort when it came to smaller arrays while Heapsort was faster for

larger arrays. The distribution of times is available in a series of graphs near the end of the

paper. These graphs showed that although Quicksort was the fastest algorithm it was less

consistent in the times with a larger deviation than other algorithms.

11



Quicksort 1 000 10 000 100 000

0.1 0.5115081320000007 7.095698688000023 86.94529332400013

0.01 0.2867567160000012 4.655413507999978 64.56828979199977

0.001 0.12861147999999917 2.5994345640000054 40.67480536799985
Table 1: Quicksort’s mean time to sort for different data sizes and deviations

Mergesort 1 000 10 000 100 000

0.1 0.834567356000006 11.253142395999983 129.0017180359995

0.01 0.8418935760000105 10.862672968000004 126.90739609199957

0.001 0.8310639239999923 10.615920836000026 123.27779229199915
Table 2: Mergesort’s mean time to sort for different data sizes and deviations

Heapsort 1 000 10 000 100 000

0.1 0.9804551359999946 14.634866380000087 186.42501203199836ö

0.01 0.9979233439999945 13.847970408000087 184.75011486800096

0.001 0.833101831999997 14.040838683999912 180.56611087999985
Table 3: Heapsort’s mean time to sort for different data sizes and deviations

Timsort 1 000 10 000 100 000

0.1 0.9692688480000061 14.552908247999987 191.6550402720008

0.01 0.9542062319999943 14.023030819999951 188.94938102800057

0.001 0.8773404840000044 13.911564695999983 181.96966788399968
Table 4: Timsort’s mean time to sort for different data sizes and deviations

12



6. Discussion
This survey is by no means free from biases and errors. The fact that Quicksort is the fastest

across all of my categories does not by any means mean that it is the fastest in all situations.

The Quicksort algorithm was written first and therefore had more time than the others to be

optimized. I do on the other hand not believe that to be the sole reason for Quicksort’s good

performance. Quicksort is generally considered to be one of the fastest sorting algorithms as

stated by Wikipedia. I also believe the datasets to be in favour of Quicksort as it was made to

take advantage of duplicate instances of items. This is of course not wrong as there are plenty

of real-world scenarios where the majority of values are duplicates such as a leaderboard.

There are on the other hand also scenarios where there would be no duplicates such as a

database with user IDs.

The fact that there was no significant difference between the sizes used is also no surprise

considering they all have a time complexity of O(n log n). This combined with the fact that

the sorting of larger lists took up most of the time I believe that any future survey regarding

this topic should not use array sizes beyond 1,000 considering that there was no notable

difference. Considering that the time complexity and big O notation only measure the largest

factor and not the smaller factors, such as constants and smaller exponents, which will

become less negligible as the size of the data set decreases. Therefore, there may be a

significant difference between the algorithms when the data set is small enough, This was

partly shown in the survey for Timsort and Heapsort as Heapsort was faster for larger arrays

and Timsort faster for smaller arrays. Therefore, I recommend any future survey in this field

to survey arrays as small as 10 items. The smaller arrays would free up much time that would

be better used in different sets of data, These could include but not be limited to other

standard deviations of a Gaussian distribution, a shuffled range of numbers representing

instances where no duplicates are present, a uniform distribution of numbers representing a

set of data with duplicates each of which with an equal chance of occurring, and any other

distribution or set of data with practical real-world equivalents.

As shown in the graphs, Quicksort may be the fastest overall but this survey revealed that it

was less consistent in its time when compared to the other algorithms. This is because the

other algorithms have a worst time complexity of O(n log n) while Quicksort has a worst time

13



complexity of O(n2) which makes it a lot slower in some circumstances. This does limit the

applicability of Quicksort as some fields require a consistent time rather than a fast average

time. Quicksort will still be useful in applications such as computer science, but when sorted

information needs to be presented to a user the other algorithms may be a better choice due to

the lower chance of it taking too long.

Naturally, Quicksort will rarely be the best sorting algorithm, and a hybrid algorithm will

almost always be the fastest. Still, Quicksort will probably be best suited as a base for said

hybrid algorithms. Those algorithms can then be fine-tuned and experimented on for

individual applications to get the best performance for the relevant data.

14



7. Conclusion

Therefore, it is apparent that Quicksort is generally the most applicable sorting algorithm for

most purposes as it has a mean time that is much faster than any other algorithm although

these other algorithms might be better in certain circumstances where there are different

requirements.

15



List of sources

Wikipedia. 2023. "Algorithm." Wikimedia Foundation. Last modified September 24, 2023.

https://en.wikipedia.org/wiki/Algorithm.

Wikipedia. 2024. "Big O notation." Wikimedia Foundation. Last modified February 4, 2024.

https://en.wikipedia.org/wiki/Big_O_notation.

Wikipedia. 2023. "Comparison Sort." Wikimedia Foundation. Last modified July 31, 2023.

https://en.wikipedia.org/wiki/Comparison_sort.

Wikipedia. 2024. "Continuous Uniform Distribution." Wikimedia Foundation. Last modified

January 26, 2024. https://en.wikipedia.org/wiki/Continuous_uniform_distribution.

Wikipedia. 2023. "Function (Computer Programming)." Wikimedia Foundation. Last

modified September 27, 2023.

https://en.wikipedia.org/wiki/Function_(computer_programming).

Wikipedia. 2024. "Heapsort." Wikimedia Foundation. Last modified February 12, 2024.

https://en.wikipedia.org/wiki/Heapsort.

Wikipedia. 2023. "Hybrid Algorithm." Wikimedia Foundation. Last modified February 3,

2023. https://en.wikipedia.org/wiki/Hybrid_algorithm.

Wikipedia. 2023. "Insertion Sort." Wikimedia Foundation. Last modified December 29, 2023.

https://en.wikipedia.org/wiki/Insertion_sort.

Wikipedia. 2024. "Merge Sort." Wikimedia Foundation. Last modified January 27, 2024.

https://en.wikipedia.org/wiki/Merge_sort.

Wikipedia. 2023. "Normal Distribution." Wikimedia Foundation. Last modified September

27, 2023. https://en.wikipedia.org/wiki/Normal_distribution.

Wikipedia. 2023. "Overhead (Computing)." Wikimedia Foundation. Last modified May 21,

2023. https://en.wikipedia.org/wiki/Overhead_(computing).

Wikipedia. 2024. "Quicksort." Wikimedia Foundation. Last modified January 3, 2024.

https://en.wikipedia.org/wiki/Quicksort.

Wikipedia. 2023. "Recursion (Computer Science)." Wikimedia Foundation. Last modified

August 21, 2023. https://en.wikipedia.org/wiki/Recursion_(computer_science).

16

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Comparison_sort
https://en.wikipedia.org/wiki/Continuous_uniform_distribution
https://en.wikipedia.org/wiki/Function_(computer_programming)
https://en.wikipedia.org/wiki/Heapsort
https://en.wikipedia.org/wiki/Hybrid_algorithm
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Overhead_(computing)
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Recursion_(computer_science)


Wikipedia. 2023. "Sorting Algorithm." Wikimedia Foundation. Last modified September 26,

2023. https://en.wikipedia.org/wiki/Sorting_algorithm.

Wikipedia. 2023. "Time Complexity." Wikimedia Foundation. Last modified September 22,

2023. https://en.wikipedia.org/wiki/Time_complexity.

Wikipedia. 2024. "Timsort." Wikimedia Foundation. Last modified February 13, 2024.

https://en.wikipedia.org/wiki/Timsort.

17

https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Timsort


Attachments

Link to GitHub Repository: https://github.com/axelNTI/Gymnasiearbete

Chart 1: Quicksort’s distribution of times sorting 1,000 elements with a standard deviation of 1.

Chart 2: Quicksort’s distribution of times sorting 1,000 elements with a standard deviation of 10.

18

https://github.com/axelNTI/Gymnasiearbete


Chart 3: Quicksort’s distribution of times sorting 1,000 elements with a standard deviation of 100.

Chart 4: Quicksort’s distribution of times sorting 10,000 elements with a standard deviation of 10.

19



Chart 5: Quicksort’s distribution of times sorting 10,000 elements with a standard deviation of 100.

Chart 6: Quicksort’s distribution of times sorting 10,000 elements with a standard deviation of 1,000.

20



Chart 7: Quicksort’s distribution of times sorting 100,000 elements with a standard deviation of 100.

Chart 8: Quicksort’s distribution of times sorting 100,000 elements with a standard deviation of 1,000.

21



Chart 9: Quicksort’s distribution of times sorting 100,000 elements with a standard deviation of 10,000.

Chart 10: Mergesort’s distribution of times sorting 1,000 elements with a standard deviation of 1.

22



Chart 11: Mergesort’s distribution of times sorting 1,000 elements with a standard deviation of 10.

Chart 12: Mergesort’s distribution of times sorting 1,000 elements with a standard deviation of 100.

23



Chart 13: Mergesort’s distribution of times sorting 10,000 elements with a standard deviation of 10.

Chart 14: Mergesort’s distribution of times sorting 10,000 elements with a standard deviation of 100.

24



Chart 15: Mergesort’s distribution of times sorting 10,000 elements with a standard deviation of 1,000.

Chart 16: Mergesort’s distribution of times sorting 100,000 elements with a standard deviation of 100.

25



Chart 17: Mergesort’s distribution of times sorting 100,000 elements with a standard deviation of 1,000.

Chart 18: Mergesort’s distribution of times sorting 100,000 elements with a standard deviation of 10,000.

26



Chart 19: Heapsort’s distribution of times sorting 1,000 elements with a standard deviation of 1.

Chart 20: Heapsort’s distribution of times sorting 1,000 elements with a standard deviation of 10.

27



Chart 21: Heapsort’s distribution of times sorting 1,000 elements with a standard deviation of 100.

Chart 22: Heapsort’s distribution of times sorting 10,000 elements with a standard deviation of 10.

28



Chart 23: Heapsort’s distribution of times sorting 10,000 elements with a standard deviation of 100.

Chart 24: Heapsort’s distribution of times sorting 10,000 elements with a standard deviation of 1,000.

29



Chart 25: Heapsort’s distribution of times sorting 100,000 elements with a standard deviation of 100.

Chart 26: Heapsort’s distribution of times sorting 100,000 elements with a standard deviation of 1,000.

30



Chart 27: Heapsort’s distribution of times sorting 100,000 elements with a standard deviation of 10,000.

Chart 28: Timsort’s distribution of times sorting 1,000 elements with a standard deviation of 1.

31



Chart 29: Timsort’s distribution of times sorting 1,000 elements with a standard deviation of 10.

Chart 30: Timsort’s distribution of times sorting 1,000 elements with a standard deviation of 100.

32



Chart 31: Timsort’s distribution of times sorting 10,000 elements with a standard deviation of 10.

Chart 32: Timsort’s distribution of times sorting 10,000 elements with a standard deviation of 100.

33



Chart 33: Timsort’s distribution of times sorting 10,000 elements with a standard deviation of 1,000.

Chart 34: Timsort’s distribution of times sorting 100,000 elements with a standard deviation of 100.

34



Python

Chart 35: Timsort’s distribution of times sorting 100,000 elements with a standard deviation of 1,000.

Chart 36: Timsort’s distribution of times sorting 100,000 elements with a standard deviation of 10,000.

main.py:

import random

import pickle

import time

import os

from algorithms import *

35



class Result:

def __init__(self, time_ns, algorithm, size, deviation) -> None:

self.time_ns = time_ns

self.algorithm = algorithm

self.size = size

self.deviation = deviation

random.seed(os.urandom(255))

sizes = (1000, 10000, 100000)

deviations = (0.1, 0.01, 0.001)

iterations = 25000

results_list = []

for iteration in range(iterations):

print(iteration)

for size in sizes:

for deviation in deviations:

to_be_sorted = [

int(round(random.gauss(0, deviation * size), 0)) for _ in range(size)

]

quick_start = time.perf_counter_ns()

quicksort(to_be_sorted.copy())

quick_end = time.perf_counter_ns()

results_list.append(

Result(quick_end - quick_start, "Quicksort", size, deviation)

)

merge_start = time.perf_counter_ns()

mergesort(to_be_sorted.copy())

merge_end = time.perf_counter_ns()

results_list.append(

Result(merge_end - merge_start, "Mergesort", size, deviation)

)

heap_start = time.perf_counter_ns()

36



Python

heapsort(to_be_sorted.copy())

heap_end = time.perf_counter_ns()

results_list.append(

Result(heap_end - heap_start, "Heapsort", size, deviation)

)

tim_start = time.perf_counter_ns()

timsort(to_be_sorted.copy())

tim_end = time.perf_counter_ns()

results_list.append(Result(tim_end - tim_start, "Timsort", size,

deviation))

with open("data.pkl", "wb") as file:

pickle.dump(results_list, file)

Program 1: The code that runs and tests all of the algorithms and saves the data.

algorithms.py:

def quicksort(arr: list) -> list:

if len(arr) < 2:

return arr

mid = len(arr) // 2

if arr[0] > arr[mid]:

arr[0], arr[mid] = arr[mid], arr[0]

if arr[0] > arr[-1]:

arr[0], arr[-1] = arr[-1], arr[0]

if arr[mid] > arr[-1]:

arr[mid], arr[-1] = arr[-1], arr[mid]

pivot = arr[mid]

less, equal, greater = [], [], []

for i in arr:

if i < pivot:

less.append(i)

elif i == pivot:

equal.append(i)

37



else:

greater.append(i)

return quicksort(less) + equal + quicksort(greater)

def mergesort(arr: list) -> list:

if len(arr) < 2:

return arr

left = mergesort(arr[: len(arr) // 2])

right = mergesort(arr[len(arr) // 2 :])

sorted_list = []

left_index = 0

right_index = 0

left_len = len(left)

right_len = len(right)

while left_len > left_index and right_len > right_index:

left_item = left[left_index]

right_item = right[right_index]

if left_item <= right_item:

sorted_list.append(left_item)

left_index += 1

else:

sorted_list.append(right_item)

right_index += 1

while left_len > left_index:

sorted_list.append(left[left_index])

left_index += 1

while right_len > right_index:

sorted_list.append(right[right_index])

right_index += 1

return sorted_list

def heapsort(arr: list) -> list:

arr = arr.copy()

start = len(arr) // 2

end = len(arr)

38



while end > 1:

if start > 0:

start -= 1

else:

end -= 1

arr[end], arr[0] = arr[0], arr[end]

root = start

while 2 * root + 1 < end:

child = 2 * root + 1

if child + 1 < end and arr[child] < arr[child + 1]:

child += 1

if arr[root] < arr[child]:

arr[root], arr[child] = arr[child], arr[root]

root = child

else:

break

return arr

def timsort(arr: list) -> list:

min_run = 32

n = len(arr)

for i in range(0, n, min_run):

left = i

right = min((i + min_run - 1), n - 1)

if right is None:

right = len(arr) - 1

for i in range(left + 1, right + 1):

key_item = arr[i]

j = i - 1

while j >= left and arr[j] > key_item:

arr[j + 1] = arr[j]

j -= 1

arr[j + 1] = key_item

size = min_run

while size < n:

39



for start in range(0, n, size * 2):

midpoint = start + size - 1

end = min((start + size * 2 - 1), (n - 1))

left = arr[start : midpoint + 1]

right = arr[midpoint + 1 : end + 1]

if len(left) == 0:

merged_array = right

elif len(right) == 0:

merged_array = left

else:

arr2 = []

index_left = index_right = 0

while len(arr2) < len(left) + len(right):

if left[index_left] <= right[index_right]:

arr2.append(left[index_left])

index_left += 1

else:

arr2.append(right[index_right])

index_right += 1

if index_right == len(right):

arr2 += left[index_left:]

break

if index_left == len(left):

arr2 += right[index_right:]

break

merged_array = arr2

arr[start : start + len(merged_array)] = merged_array

size *= 2

return arr

Program 2: The code that contains all of the algorithms.

plot.py:

40



Python

import pickle

import plotly.express as px

class Result:

def __init__(self, time_ns, algorithm, size, deviation) -> None:

self.time_ns = time_ns

self.algorithm = algorithm

self.size = size

self.deviation = deviation

with open("data.pkl", "rb") as file:

results_list = pickle.load(file)

def average(arr: list) -> float:

return sum(arr) / len(arr)

def plot_list_as_graph(data, name, size, deviation):

count_dict = {}

for item in data:

count_dict[item] = count_dict.get(item, 0) + 1

x_values = list(count_dict.keys())

y_values = list(count_dict.values())

fig = px.bar(

x=x_values,

y=y_values,

labels={"x": "Time (ms)", "y": "Amount"},

title=f"Amount of times in algorithm: {name}. Size: {size}. Standard

deviation: {size*deviation}.",

)

fig.show()

algorithms = ("Quicksort", "Mergesort", "Heapsort", "Timsort")

sizes = (1000, 10000, 100000)

41



deviations = (0.1, 0.01, 0.001)

list_of_averages = {

f"{i}_{j}": {

k: average(

[

l.time_ns * 1e-6

for l in results_list

if l.size == i and l.deviation == j and l.algorithm == k

]

)

for k in algorithms

}

for i in sizes

for j in deviations

}

list_of_values = {

f"{i}_{j}": {

k: [

round(l.time_ns * 1e-6, 2)

for l in results_list

if l.size == i and l.deviation == j and l.algorithm == k

]

for k in algorithms

}

for i in sizes

for j in deviations

}

categories = [f"{i}_{j}" for i in sizes for j in deviations]

for i in categories:

list_of_averages[i] = dict(sorted(list_of_averages[i].items(), key=lambda x:

x[1]))

print(i)

print(list_of_averages[i])

quicksort_times = []

mergesort_times = []

heapsort_times = []

timsort_times = []

42



for i in list_of_averages:

quicksort_times.append(list_of_averages[i]["Quicksort"])

mergesort_times.append(list_of_averages[i]["Mergesort"])

heapsort_times.append(list_of_averages[i]["Heapsort"])

timsort_times.append(list_of_averages[i]["Timsort"])

print(average(quicksort_times))

print(average(mergesort_times))

print(average(heapsort_times))

print(average(timsort_times))

[

plot_list_as_graph(

list_of_values[f"{size}_{deviation}"][algorithm],

algorithm,

size,

deviation,

)

for algorithm in algorithms

for size in sizes

for deviation in deviations

]

Program 3: The code that takes the data and processes it into readable and useful formats.

43


